Where did they come from?

The history of synchrotrons can be traced back to 1873, when James Clerk Maxwell published his theory of electromagnetism; this theory changed our understanding of light. Some years later in 1895, Wilhelm Rontgen expanded on Maxwell’s theory and identified X-ray light, and by 1906 Charles Barkla had discovered that X-rays could be used as a tool to determine the elements present in gases. In 1912 Max von Laue found another use for X-rays: the beams could help to identify the structure of very small matter, like atoms, based on their crystal structure. In 1913, William Henry and Lawrence Bragg, a father and son team, solved the formula for determining an object’s structure based on the pattern formed by X-rays passing through it. The Braggs’ discovery opened up the field of crystallography, making it possible to investigate the atomic nature of our world.

The first synchrotron, built in 1946, was designed to study collisions between high energy particles. In this role they were very successful, and the Large Hadron Collider at CERN is still dedicated to this purpose. But scientists soon noticed that these machines also had a by-product: they generated very bright light.

In 1956, the first experiments were carried out using synchrotron light siphoned off from a particle collider at Cornell in the USA. Over the years, the number of experiments using synchrotron light increased, but the scientists still had to use the light that was a by-product of particle collider machines; there was no dedicated synchrotron light source. This changed in 1980, when the UK built the world's first synchrotron dedicated to producing synchrotron light for experiments at Daresbury in Cheshire, UK. Now there are over 40 large synchrotron light sources around the world. These scientific facilities produce bright light that supports a huge range of experiments with applications in engineering, health and medicine, cultural heritage, environmental science and many more.